@article{185, keywords = {animal tissue, Animals, Article, brain, brain electrophysiology, carbon nanotube, Carbon nanotubes, cell function, cell membrane, colloid, concentration (parameters), controlled study, Evoked Potentials, evoked response, excitability, excitation, excitatory postsynaptic potential, field potentials, hippocampus, in vitro study, Ion Channel Gating, Ion Channels, male, Microdissection, multi walled nanotube, Nanotubes, Carbon, neocortex, Neuronal Plasticity, Neurons, nonhuman, plasticity, rat, Rats, Rats, Sprague-Dawley, Rattus, somatosensory cortex, Synaptic Potentials, synaptic transmission}, author = {P. Varró and Imola Szigyártó and A. Gergely and E. Kálmán and I. Világi}, title = {Carbon nanotubes exert basic excitatory enhancement in rat brain slices}, abstract = {Carbon nanotubes are promising new tools in biomedicine but they may have yet some unknown influences on the organism. In the present study, the acute effect of solubilized, multi-walled carbon nanotubes (MWCNTs) on basic neuronal functions was examined. Rat brain slices were treated in vitro with nanotube-containing colloid solutions at concentrations of 100-800 μg/ml and evoked field potentials were recorded from the somatosensory cortex and hippocampus. Basic excitability of the treated slices was characterized by the amplitude of field excitatory postsynaptic potentials (fEPSPs) and population spikes. Experimental results indicated significantly higher excitability of treated samples than that of controls. Multiple components in evoked potentials were observed, which is in accordance with the increased excitability of investigated brain areas. Tests of short- and long-term plasticity were also performed, which revealed no difference between control and treated slices. Experimental results suggest an interaction between nanotubes and brain tissue. MWCNTs seem to act on the basic membrane potential of neurons by changing membrane properties or via a mechanism linked to voltage-gated ion channels, rather than influencing specific synaptic transmission. Further investigation is needed to clarify the nature of interactions between nanotubes and brain tissue. © 2013 Akadémiai Kiadó, Budapest.}, year = {2013}, journal = {Acta Biologica Hungarica}, volume = {64}, pages = {137-151}, month = {2013}, isbn = {02365383 (ISSN)}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84878810675&partnerID=40&md5=34f87c407ad4b36799e349207377dddb}, note = {Export Date: 8 April 2016CODEN: ABHUECorrespondence Address: Varró, P.; Department of Physiology and Neurobiology, Eötvös Loránd University, Pazmany Peter setany 1/C, H-1117 Budapest, Hungary; email: varropetra@caesar.elte.huChemicals/CAS: Ion Channels; Nanotubes, CarbonReferences: Belyanskaya, L., Weigel, S., Hirsch, C., Tobler, U., Krug, H.F., Wick, P., Effects of carbon nanotubes on primary neurons and glial cells (2009) Neurotoxicology, 30, pp. 702-711;Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M., Biomedical applications of functionalised carbon nanotubes (2005) Chem. Commun. (Camb.), pp. 571-577; Cellot, G., Cilia, E., Cipollone, S., Rancic, V., Sucapane, A., Giordani, S., Gambazzi, L., Ballerini, L., Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts (2009) Nat. Nanotechnol., 4, pp. 126-133; Chagnac-Amitai, Y., Connors, B.W., Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition (1989) J. Neurophysiol., 61, pp. 747-758; Coccini, T., Roda, E., Sarigiannis, D.A., Mustarelli, P., Quartarone, E., Profumo, A., Manzo, L., Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells (2010) Toxicology, 269, pp. 41-53; Deng, X., Jia, G., Wang, H., Sun, H., Wang, X., Yang, S., Wang, T., Liu, Y., Translocation and fate of multi-walled carbon nanotubes in vivo (2007) Carbon, 45, pp. 1419-1424; Ellinger-Ziegelbauer, H., Pauluhn, J., Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period (2009) Toxicology, 266, pp. 16-29; Firme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems (2010) Nanomedicine, 6, pp. 245-256; Gergely, A., Telegdi, J., Meszaros, E., Paszti, Z., Tarkanyi, G., Karman, F.H., Kalman, E., Modification of multi-walled carbon nanotubes by Diels-Alder and Sandmeyer reactions (2007) J. Nanosci. Nanotechnol., 7, pp. 2795-2807; Guo, J., Zhang, X., Li, Q., Li, W., Biodistribution of functionalized multiwall carbon nanotubes in mice (2007) Nucl. Med. Biol., 34, pp. 579-583; Hurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue (2006) Carbon, 44, pp. 1028-1033; Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X., Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene (2005) Environ. Sci. Technol., 39, pp. 1378-1383; Kateb, B., Van Handel, M., Zhang, L., Bronikowski, M.J., Manohara, H., Badie, B., Internalization of MWCNTs by microglia: Possible application in immunotherapy of brain tumors (2007) Neuroimage, 37 (SUPPL. 1), pp. S9-17; Lacerda, L., Ali-Boucetta, H., Herrero, M.A., Pastorin, G., Bianco, A., Prato, M., Kostarelos, K., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes (2008) Nanomedicine (Lond.), 3, pp. 149-161; Li, Q.W., Zhang, J., Yan, H., He, M.S., Liu, Z.F., Thionine-mediated chemistry of carbon nanotubes (2004) Carbon, 42, pp. 287-291; Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy (2008) Proc. Natl Acad. Sci. U.S.A, 105, pp. 1410-1415; Lovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Righi, M., Spalluto, G., Ballerini, L., Carbon nanotube substrates boost neuronal electrical signaling (2005) Nano Lett, 5, pp. 1107-1110; Malarkey, E.B., Parpura, V., Applications of carbon nanotubes in neurobiology (2007) Neurodegener. Dis., 4, pp. 292-299; Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., Ballerini, L., Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits (2007) J. Neurosci., 27, pp. 6931-6936; Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y., Riviere, J.E., Multiwalled carbon nanotube interactions with human epidermal keratinocytes (2005) Toxicol. Lett., 155, pp. 377-384; Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Lison, D., Respiratory toxicity of multi-wall carbon nanotubes (2005) Toxicol. Appl. Pharmacol., 207, pp. 221-231; Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C., Translocation of inhaled ultrafine particles to the brain (2004) Inhal. Toxicol., 16, pp. 437-445; Osorio, A.G., Silveira, I.C.L., Bueno, V.L., Bergmann, C.P., H(2)SO(4)/HNO(3)/HCl- Functionalization and its effect on dispersion of carbon nanotubes in aqueous media (2008) Applied Surface Science, 255, pp. 2485-2489; Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J. Biol. Chem., 278, pp. 50212-50216; Pulskamp, K., Diabaté, S., Krug, H.F., Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants (2007) Toxicol. Lett., 168, pp. 58-74; Rotoli, B.M., Bussolati, O., Bianchi, M.G., Barilli, A., Balasubramanian, C., Bellucci, S., Bergamaschi, E., Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells (2008) Toxicol. Lett., 178, pp. 95-102; Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Moore, V.C., Colvin, V.L., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro (2006) Toxicol. Lett., 161, pp. 135-142; Schrand, A.M., Dai, L., Schlager, J.J., Hussain, S.M., Osawa, E., Differential biocompatibility of carbon nanotubes and nanodiamonds (2007) Diamond & Related Materials, 16, pp. 2118-2123; Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers (2006) Proc. Natl Acad. Sci. U.S.A., 103, pp. 3357-3362; Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J., The biocompatibility of carbon nanotubes (2006) Carbon, 44, pp. 1034-1047; Sridharan, I., Kim, T., Wang, R., Adapting collagen/CNT matrix in directing hESC differentiation (2009) Biochem. Biophys. Res. Comm., 381, pp. 508-512; Tjong, S., Structural and mechanical properties of polymer nanocomposites (2006) Materials Science and Engineering R, 53, pp. 73-197; Vilagi, I., Dobo, E., Borbely, S., Czege, D., Molnar, E., Mihaly, A., Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex (2009) Experimental Neurology, 219, pp. 136-145; Wheal, H.V., Bernard, C., Chad, J.E., Cannon, R.C., Pro-epileptic changes in synaptic function can be accompanied by pro-epileptic changes in neuronal excitability (1998) Trends Neurosci, 21, pp. 167-174; Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays (2006) Nano Lett, 6, pp. 1261-1268; Wu, G., Xu, B.Q., Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes (2007) Journal of Power Sources, 174, pp. 148-158; Yang, S., Guo, W., Lin, Y., Deng, X., Wang, H., Sun, H., Liu, Y., Sun, Y., Biodistribution of pristine single-walled carbon nanotubes in vivo (2007) J. Phys. Chem. C, 111, pp. 17761-17764; Yang, S.T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., Ge, C., Liu, Y., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice (2008) Toxicol. Lett., 181, pp. 182-189; Yu, H., Jin, Y.G., Li, Z.L., Peng, F., Wang, H.J., Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst (2008) Journal of Solid State Chemistry, 181, pp. 432-438}, }