Structural Water Stabilizes Protein Motifs in Liquid Protein Phase: The Folding Mechanism of Short β-Sheets Coupled to Phase Transition

Author
Keywords
Abstract

Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also possesses potential in nanotechnological applications. However, the energetic effects of a hydrophobic yet water-containing environment on protein folding are poorly understood. Here, we focus on small β-sheets, the key motifs of proteins, undergoing structural changes in liquid–liquid phase separation (LLPS) and also model the mechanism of energy-coupled unfolding, e.g., in proteases, during W → LP transition. Due to the importance of the accurate description for hydrogen bonding patterns, the employed models were studied by using quantum mechanical calculations. The results demonstrate that unfolding is energetically less favored in LP by ~0.3–0.5 kcal·mol−1 per residue in which the difference further increased by the presence of explicit structural water molecules, where the folded state was preferred by ~1.2–2.3 kcal·mol−1 per residue relative to that in W. Energetics at the LP/W interfaces was also addressed by theoretical isodesmic reactions. While the models predict folded state preference in LP, the unfolding from LP to W renders the process highly favorable since the unfolded end state has >1 kcal·mol−1 per residue excess stabilization.

Year of Publication
2021
Journal
International Journal of Molecular Sciences
Volume
22
Issue
16
Number of Pages
8595
ISSN Number
1422-0067
DOI
10.3390/ijms22168595
Download citation